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Abstract

The creation of the state-of-the-art in Large Language Models (LLM)’s has
to date been solely the province of large, well funded technology companies.
In this white paper, we showcase our initial findings, demonstrating that it is
possible to train such models in a decentralised manner, using the Bittensor
Ecosystem, and argue that the creation of intelligence is the true use case that
blockchains have been searching for. Subnet 9, the pretraining subnet within
Bittensor, has developed 700M (million) and 7B (billion) parameter models
that can outperform comparable industry-leading models such as gpt2-large and
falcon-7b, respectively. After presenting the subnet’s architecture and justifying
design choices, we share our roadmap for future developments, which outlines
our plans to further extend this novel proof-of-concept system.

∗Alt. title: Incentives Are All You Need
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Foreword

Blockchain technology has proven its ability to marshal decentralized comput-
ing power to address a specific challenge, such as facilitating transparent and
tamper-proof voting in a decentralized voting system [1]. It is a foundational
technology powering new models of economic value.

In this paper, we introduce new research showing how decentralized in-
centive systems, powered by blockchain technologies, can be used to tackle the
biggest computational challenge of our age: developing State-of-the-Art (SOTA)
open-source large language models (LLMs) in a transparent way. We demon-
strate how multiple actors can be aligned by economic incentives through a
Bittensor Subnet - in this case Subnet 9, its flagship pretraining subnet. Fur-
thermore, they can collectively produce new pretraining models that outperform
state-backed contemporaries such as falcon-7b, when benchmarked using mod-
ern web-scale datasets. This is a crucial contribution to Bittensor’s mission of
creating a collectively-run intelligence market that continually produces newly
trained models.

With this paper, and our wider work on the pretraining subnet, we want
to provide a blueprint for how a decentralized network can be harnessed and
directed at the biggest computing challenges we face.
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1 Introduction

1.1 Context

Generative AI is still in its infancy. We can see it’s technically feasible, com-
mercially viable and increasingly powerful. But key questions still remain: How
can end users access generative AI at scale? Who should be building and gov-
erning LLMs? And how do we incentivise the creation of SOTA models that
are constantly improving?

Underpinning the answer to these questions is the ownership structure of
both machine learning models and the datasets they are trained on. Broadly,
these can be conceptualized as:

• Closed-source: Referring to proprietary datasets and AI models that
companies are developing internally and, in the case of models, distribut-
ing as a “black box” through a user-facing portal or API. Decisions about
datasets and model design are made privately, shaped by the company’s
strategic priorities.

• Open-source: These are models and datasets that are freely available for
developers to build with. Models such as Llama and Mistral are typically
referred to as open source, although questions remain about how open
these models are.

The core thesis of Bittensor is that there is a third way to build AI mod-
els: using a secure, distributed network to incentivise rapid open-source model
improvement.

The Bitcoin blockchain provides a useful analogy to Bittensor. Since launch,
Bitcoin has become the world’s largest supercomputer [1]. It assembles com-
puting power on a scale that is unmatched by any company, research body, or
government agency. It then applies that computing power solely to the task of
securing a proof-of-work blockchain and rewards participants according to their
contribution.

At the highest level, Bittensor is a framework for distributed teams to
work in parallel to marry the computational power of bitcoin, with the compu-
tational problem of the creation of machine intelligence, in the form of digital
commodities [3]. It allows different groups to make contributions, have their
effort verified by validators and then be rewarded in TAO, the Bittensor-native
cryptocurrency. These participants include:

• Miners who provide the computational resources as well as leveraging
their unique skill sets.

• Validators, who evaluate and rank the work done by miners and reward
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them based on their contributions.

• Subnet Owners, who define both the competition and the evaluation
criteria and as such determine the commodities which are produced by
their subnet.

In some subnets, including pretraining, the competition rewards participants
in a winner-takes-all fashion. In others, miners receive a percentage of total
rewards based on their contributions. Within Bittensor, we have the ability to
direct the computing power of all network participants towards solving specific
problems, from protein folding [4] to LLM pretraining [5] and fine-tuning [6].
By combining open-source datasets and software development with the incen-
tive structure and authentication of a blockchain, it is possible to coordinate
computing power at scale, and develop AI commodities in a transparent, fair,
and rewarding manner.

1.2 Why a Pretraining Subnet Belongs on Bittensor

Pretraining incurs very high costs due to its enormous energy consumption and
reliance on specialized hardware and infrastructure. The computing power re-
quired for a state-of-the-art LLM doubles every 10 months. While some of
this increasing compute is off-set by greater efficiency (due to both modern
techniques and Moore’s Law), it still translates into high costs for model devel-
opment. Leading closed-source models don’t publish the exact training cost of
their models, but research from OpenAI suggested model development already
costs around $100,000,000 and will reach $500,000,000 by 2030. Separately,
OpenAI CEO Sam Altman has said that GPT-4 cost “more than a hundred
million dollars” to train [7].

As the cost of model training increases exponentially, only the very largest
companies can access and pay for pretraining and fine-tuning on the scale needed
for SOTA models. The pretraining subnet on Bittensor offers an alternative:
a unique set of incentives for pretraining models which, as we detail in section
4, incentivise miners to produce high quality models, given a set of constraints
such as model size. Within Bittensor, pretraining is a logical use case for the
ecosystem, as these pretrained models can then power other intelligence-based
subnets. It is a pillar of the Bittensor ecosystem where marginal improvements
to pretraining can have significant downstream benefits for other Bittensor-
based projects.

Pretraining is also the most computationally intense stage of AI model
development. Established AI firms are spending huge amounts to assemble the
computing power they need to pretrain models - Meta’s Llama3.1 8B took 1.46
million H100 GPU hours to train , while the larger 405B model took a staggering
30.84 million H100 GPU hours [8].

This is therefore one of the clearest use cases for developing a decentral-
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ized alternative. Building on Bittensor allows us to subsidize that training cost
while providing a platform for skilled practitioners to monetize their expertise
and bring value to the wider ecosystem in the form of open models. This is
why developing an effective pretraining subnet on Bittensor has been a priority,
providing the foundation that other subnets and model builders can fine-tune
for specific use cases. Figure 1 shows the empirical trends for AI energy con-
sumption, overlaid with the same figures for cryptocurrency mining. Current
trends are extrapolated to predict growth from 2026 to 2030. This supports our
argument that using cryptocurrency mining as a vehicle for AI development is
an excellent opportunity for procuring the necessary scale of compute for the
next generation of AI systems.

Figure 1: Energy consumption of cryptocurrencies and data centers. Projected
growth is shown for 2026 and beyond.

1.3 Decentralized Training vs Decentralized Competition

The concept of decentralized training has become increasingly popular, and can
be easily confused with the competitions that currently run within the pretrain-
ing subnet and Bittensor more broadly. Pluralis Research defines decentralized
training as “the creation of foundation models over loosely-connected, heteroge-
neous swarms of consumer-grade computers” [9]. This modular approach would
enable models to grow beyond the constraints of any individual miner. In simple
terms, decentralized training can in theory produce models that are far larger
than the memory capacity of individual miners by “spreading” the model layers
across the network.

At the time of writing, there is an ongoing debate about whether such
an architecture for model development is feasible in practice and what form
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that could take. Today, the pretraining subnet harnesses a crowd of competing
miners each delivering a complete pretrained model, which can then be built
upon by others as the competition evolves. We discuss the roadmap for our
pretraining subnet in section 5 which outlines a potential approach to swarm
learning.

2 Subnet Architecture

2.1 Overview

At a very high level, participants in the pretraining subnet perform one of the
following tasks:

• Miners individually pretrain large language models and upload them to
a public hub (Hugging Face). Each model is owned by a single miner with
a unique identifier (UID) and this association is written to the blockchain
via a commit hash and verified by the validators (section 3.3.1).

• Validators independently download and evaluate the performance of each
model against a randomly selected batch of a public web-scale evaluation
dataset and assign a weight to each miner (section 2.3). They periodically
submit their weights to the Bittensor chain, where the weights are com-
bined using Yuma Consensus [3] and used to determine the TAO emissions.
Yuma Consensus combines proof-of-work and proof-of-stake mechanisms
to incentivise miners and validators respectively. Validators and miners
are both rewarded with newly-minted TAO, based on their contributions.

In the following sections, we give a formal and simplified description of
the subnet’s components. For the sake of clarity, we will make the following
assumptions:

1. Each miner has a unique UID, and therefore has trained and uploaded a
single model.

2. Only one validator participates in the evaluation.

2.2 Miners

We consider a competition with n miners, each identified by a unique identifier
UIDi, with i ∈ {0, ..., n − 1}. Each participant trains an LLM fi using their
respective dataset(s) Di of choice. For performance reasons, miners will most
likely train on the same dataset they will be evaluated on. When miners are
confident that they have produced the winning model in the competition, they
upload the model to Hugging Face at a specific block b.
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2.3 Validators

Validators download the set of pretrained LLMs M = {f0, ..., fn−1}, and evalu-
ate them on a common evaluation dataset Deval.

2.3.1 The Evaluation Dataset

Given that miners have access to the validator’s code, and could even be running
a validator themselves, having a fixed and predefined evaluation dataset would
inevitably result in the general adoption of trivial memorization strategies, ren-
dering the subnet useless. To address this issue, we create Deval at evaluation
time by randomly sampling a subset of a very large and high quality dataset
such as FineWeb [10]. Once Deval has been created and properly tokenized, it
is partitioned into a set D = {d1, ..., dm} consisting of m batches d of equal size.
The evaluation process consists of three steps:

• Computing the losses (per batch)

• Determining the winners

• Calculating the rewards

2.3.2 Computing Losses

The loss function used in this evaluation is perplexity. Before defining per-
plexity, we introduce the cross-entropy loss function, which is used to calculate
perplexity.

Cross-Entropy Loss (H): For a given model f and a batch d = {(xt, yt)}Tt=1,
the cross-entropy loss is defined as:

H(f, d) = − 1

T

T∑
t=1

logP (yt|xt, f) (1)

where T is the number of samples per batch, xt are inputs, yt are the corre-
sponding target outputs and P (yt|xt, f) is the predicted probability of the target
yt given the input xt and the model f .

Perplexity Loss (L): The perplexity loss is the exponentiation of the
cross-entropy loss, which provides a more interpretable measure of model per-
formance. It is defined as:

L(f, d) = e−
1
T

∑T

t=1
logP (yt|xt,f) (2)

Perplexity is an intuitive objective function because it measures how well
a model predicts a sequence of words, with lower values indicating better pre-
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dictions. It’s like assessing how “surprised” the model is by the actual outcome
– the less surprised it is, the better it understands the data.

For the remainder of the paper, we will refer to L simply as loss. For each
model fi, the losses on the evaluation batches are computed as follows:

• Initial Verification: First, we ensure the model generates reasonable
outputs. This is done by checking the model’s outputs on the first two
batches d1 and d2. Specifically, we generate a fixed number of tokens for
each input and evaluate the diversity and repetitiveness of these outputs.
If the model’s outputs are too similar to each other or internally repetitive,
which means they perform no better than randomly guessing words, it is
assigned an infinite loss for all batches.

• Loss calculation: For the models that pass the initial verification, we
compute the perplexities L(fi, dj) ≡ Lij on each batch dj .

2.3.3 Determining Pairwise Winners

A pairwise win comparison is defined between any two models fi and fj . For
each batch dk, a win is determined using the function:

isWin(Lik,Ljk, bi, bj) =

{
Lik < Ljk : i = j
(1− ϵ)Lik < Ljk : otherwise

(3)

with i, j integers such that i ≤ j, bi and bj are the blocks at which models
fi and fj were uploaded to Hugging Face, respectively. Finally, ϵ is a positive
constant factor which acts the increase rewards for earlier models.

Note that ϵ is used to ensure that a new model is considered better than
an older model if and only if, the difference in their losses is greater by at least
ϵ. This is necessary given that all models are publicly available in Hugging
Face, and without imposing a minimum improvement threshold, downloading
the top performing model and minimally tweaking it would be enough to game
the scoring strategy.

2.3.4 Determining the Final Scores

The total number of wins Wi for each model fi on Deval are computed by
iterating over all batches as follows:

Wi =
∑
j ̸=i

m∑
k=1

isWin(Lik,Ljk, bi, bj) (4)

and the win rate Ri is defined as
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Ri =
Wi

(n− 1) ·m
(5)

where (n− 1) ·m is the total number of pairwise comparisons each model par-
ticipates in.

2.3.5 Setting Weights

Win rates are converted into weights using the softmax function, which intro-
duces a probabilistic approach to model selection and gives higher weights to
better-performing models. The softmax function is defined as

Wi =
e

Ri
T∑m

k=1 e
Rj
T

(6)

where T is the temperature, which controls how much of the weight the
top miners recieve. We use T = 0.01 which gives 96% of the weight to the best
model.

These weights are then updated using a moving average method, which
balances the influence of previous weights with the newly computed ones to en-
sure both stability and adaptability. Finally, models are prioritized for the next
evaluation round based on their updated weights and win rates. Models with
significant weights are given higher priority, followed by those with higher win
rates, ensuring that the most promising models are evaluated more frequently.

3 Design Choices

Our approach is to impose as few constraints on miners as possible, in order
to give them the greatest possible freedom to explore the model landscape.
However, we have also made multiple design choices to align Subnet 9’s goals
and the work produced by its participants. Our three guiding questions are:

• How do we identify and compensate individual contributions?

• How do we incentivise continuous improvement?

• How do we mitigate risks?

These fundamental questions allow us to focus on key outcomes as we hone
the subnet’s design. Each of these questions ultimately leads us to maximize the
competitive element of the subnet architecture, while reducing the risk posed
by bad actors.
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3.1 Evaluation

LLM benchmarks (such as HellaSwag [11] and MMLU-Pro [12]) provide a stan-
dardized measure of model capabilities and are commonly used by practition-
ers to provide an objective comparison between models. Despite their utility,
benchmarks can be a double edged sword. In their pursuit of impressive results,
researchers may prioritize performance on these metrics over broader research
objectives (and even overall usefulness), as outperforming benchmarks is cur-
rently the most recognized method for demonstrating the superiority of an AI
model. This phenomenon is encapsulated by Goodhart’s Law, which states,
“When a measure becomes a target, it ceases to be a good measure.” This is
particularly true when it comes to models trained by miners trying to maximize
their rewards. Rewarding miners for performing well on known benchmarks
could lead to overfitting on them, limiting their usefulness as an evaluation
method.

By choosing a state-of-the-art loss function such as perplexity (used in
GPT and Llama families of models, among others), and a SOTA dataset such
as FineWeb Edu [14], we incentivize miners to perform well on those, laying the
grounds to keep up with the latest closed-source models.

Miners know that they will be evaluated on a random subset of FineWeb
Edu. Despite this knowledge, a miner would find it difficult to overfit on such
a massive dataset. The vastness and diversity of the FineWeb dataset make it
impractical to memorize or overfit specific patterns or examples. The random
subset evaluation also means that the miners would struggle to predict which
portions of the dataset they will be tested on, ensuring that their models need
to generalize well across the entire dataset rather than performing well on a
few specific sections. Furthermore, continuous updates and expansions of the
evaluation dataset make it a moving target, further complicating any attempts
at overfitting.

3.2 Model Size

Models submitted to the pretraining subnet have to meet specific sizes and ar-
chitectures. Sizes have steadily increased over time - for the current competition,
we cap the maximum model size at approximately 7B (billion parameters). Pre-
vious generations of competition on the subnet have run at smaller parameter
limits: 186M and 700M. Moreover, we will be expanding to a multi-competition
subnet, hosting concurrent competitions at 700M, 3B, 7B and 14B 1. By intro-
ducing concurrent competitions of different model sizes, we hope to provide an
on-ramp for teams to validate and refine their approaches in a lower-risk envi-
ronment. An additional benefit to this design is that it enables us to analyze

1On August 12th 2024, the subnet was expanded to support concurrent competitions at
sizes 700M, 3B and 7B, and an additional 14B competition will be introduced on September
10th 2024. We leave the reporting of these results to a future work.
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the scaling laws of the models trained on our subnet, which will be used to plan
much larger competitions.

While model size positively correlates with performance, limiting model
size has a number of benefits. For miners, larger models require significantly
more tokens to train, which translates to higher training times and costs. Skilled
miners might struggle to compete if the entry costs keep increasing. Different
use cases might require models of different sizes - to run on a laptop or phone,
for example. Fixing model size allows us to focus on optimizing performance
without simply relying on an increasing number of parameters.

3.3 Quantifying and Rewarding Contributions

3.3.1 Establishing Ownership

As a foundational requirement, we need to ensure that every participant on
the subnet is identifiable and there is no ambiguity over model ownership. To
achieve this, every miner and validator within the subnet has its own UID.
Miners pretrain models and upload those models to their unique Hugging Face
repository. Miners commit metadata to the blockchain which identifies the
unique model’s repository as well as the hash for the model itself.

Hugging Face gives us a neutral 3rd-party platform for hosting models and
verifying they’re unique. Once uploaded, the weights of every model are visible
to everyone miner. This creates the incentive for different teams of miners
to constantly improve on what is currently the best performing model on the
subnet. It also prevents participants from keeping their models private – only
by making their models publicly available can they be eligible to receive rewards.

3.3.2 Reward Distribution: Winner-takes-all

In subnet design, form should follow function. Competitions are not standard-
ized but shaped according to user needs, performance requirements, and miner
behavior. On some subnets like Subnet 1, high bandwidth requirements mean
that second-best options are useful substitutes during periods of high demand.
The incentive mechanism therefore rewards multiple miners.

On the pretraining subnet, we have different constraints. For pretraining,
we want a small community of committed miners who are focused on constantly
improving the subnet’s best LLM. This is the case because demand for AI
systems is highly concentrated towards the current leading models. In this
use case, intense competition is more valuable than diversification. Therefore
compensation for miners is distributed on a winner-takes-all basis. The top-
performing model receives most (95%+) of the miners’ emissions on the subnet,
while every other model receives almost nothing.

The consequence of this winner-takes-all compensation structure is that it
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encourages greater professionalism among miners. At this stage, the subnet is
developed enough to ensure that participants aren’t simply running a model
on their laptop and finding that it’s competitive. They are instead committing,
skill, resources and computing power to develop incrementally better pretraining
models, in order to reach the top of the leaderboard and maintain their position.

3.3.3 Ensuring Continuous and Meaningful Improvement

As mentioned in section 2.3.3 new models have to cross the “Epsilon Threshold”;
a minimum improvement on the loss function required to beat an earlier model
on the leaderboard. At the time of writing, this threshold is set to ϵ = 0.5%.

With epsilon, we’re looking to satisfy two competing criteria. The first is
that the threshold has to be high enough to ensure stability on the subnet -
we don’t have constant changes to the top-performing model being driven by
minuscule changes in model performance. 0.5% is a high enough threshold to
ensure a new model has significantly improved over the existing best-performing
model.

The second criteria is that the improvement threshold has to be low enough
that miners are incentivised to train many increasingly powerful models. The
ideal strategy for a miner on Subnet 9 looking to maximize earnings is to have
a submitted model at the top of the leaderboard and multiple unsubmitted
models at progressively higher performance levels. For the subnet as a whole,
as long as two miners are following the same strategy, the subnet will see a
steeply decreasing loss curve. The consequences of this are discussed further in
section 3.4.2.

3.4 Limitations, Risks and Exploits

In this section we outline the potential limitations of a system such as ours, and
how our design addresses them.

3.4.1 Data Limitations

There are several considerations that must be taken to ensure that the dataset
is not a limiting factor for the production of high quality models, which are:

• The throttling effect of sub-optimal datasets: We’ve seen that the
underlying dataset on which models are pretrained had a greater-than-
expected impact on performance. Originally, we specified that models
should be trained on the Falcon Refined Web dataset [13], but it became
clear this dataset was throttling miner performance due to its lower quality
data. We have shifted the validator dataset for the subnet to FineWeb
Edu in order to address this issue, and we will continue to explore the
highest quality datasets available.
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• Dataset bias: Relying on FineWeb Edu introduces a new risk: miners
have no incentive to use multiple training datasets, but solely focus on
performing well on this benchmark dataset. While this is optimal behavior
for the miners, it may limit the performance of the pretrained models.
Expanding benchmarking tests, as outlined in section 5, will address this.

• Avoiding overfitting: As mentioned in section 3.1, miners know the
dataset from which the evaluation subset comes from. To any machine
learning expert, this would be a major red-flag for overfitting. However,
our benchmarking shows that models perform well on common bench-
marks that the miners are not training on. That demonstrates to us that
our datasets are large enough that miners aren’t overfitting their models
to the dataset.

3.4.2 Model Hoarding

It can sometimes be the case that the top miner already has an even better
pretrained model, but the subnet’s current incentive does not encourage them
to publish it. This misalignment between the miner’s optimal strategy and the
performance of the subnet as a whole reveals a design flaw, which the rebasing
strategy (section 3.4.3) fails to correct by itself. We are implementing a decaying
version of the epsilon threshold, which will directly address this issue.2

3.4.3 Embracing Openness

By design, the pretraining subnet is designed to encourage model sharing be-
tween miners. Once a better model is added to the subnet, it is publicly available
for every other miner to use as a starting point for further training. We call this
design “rebasing”, in analogy to version control systems. This creates the incen-
tive for teams of miners to constantly build upon the current best performing
model and therefore delivers long-term performance improvement to the subnet,
while minimizing the risk of one miner locking in an insurmountable advantage
with a proprietary model. Secondly, it lowers the barrier to entry as participants
are not required to train a model from scratch unless they prefer to.

There are some strategies that may be employed which can prevent col-
laboration between teams. These strategies typically preserve the inference
capabilities of model while interfering with the performance of training when
it is resumed. Two known examples, which involve the obfuscation of model
weights, are

1. Vanishing gradients: Weights that precede normalization layers may
be rescaled so that they are orders of magnitude smaller (and at the limit

2On August 8th 2024 an additional competition, named 7B*, was introduced which is
identical to the 7B competition except for a lower epsilon threshold of ϵ = 0.1%. This
experiment will be used elucidate the optimal value by means of a head-to-head comparison
of results.
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of the floating point precision). This would not impact inference by much,
but gradients on such small weights would be vanishingly small, which
would inhibit continued training.

2. Exploding gradients: Weights in the final layers of the model that are
associated with rarely activated neurons can be magnified substantially.
This will incur a small degradation of the model performance during in-
ference, but will poison the network when training is attempted due to
the backpropagation of very large gradients.

Understanding and ultimately preventing these counter-productive strate-
gies is a key focus for us and we employ monitoring and red-teaming exercises
to detect such models.

3.4.4 Preventing Cabals and Exploits

Every subnet on Bittensor faces the risk of cabals, and the specific nature of
cabalistic risk depends on the idiosyncrasies of the subnet’s design. That’s why
each subnet must develop its own approach to prevention. On Subnet 9, we have
designed the subnet to minimize the potential for collusion between teams of
miners. The winner-takes-all compensation model incentivizes competition and
reduces the risk of teams colluding. There is no economy of scale for individual
actors who run multiple miners, as only a single model can win at once. Miners
who are at the top of the leaderboard get no further benefit from working with
other teams when they are already receiving all the rewards of the competition.
Only by improving upon the best model can a second team receive rewards.

Likewise, there is a perennial risk for every Bittensor subnet that individual
miners will attempt to exploit the incentive mechanism. On Subnet 9, we man-
age this risk with the “Epsilon Threshold” approach (section 2.3.3), so we only
reward valuable contributions, rather than random modifications to a model’s
weights that only achieve minor improvements in performance.

3.5 Transparency, Security and Ethics

With the pretraining subnet, we are building the foundations of a platform
which will underpin years, if not decades, of model development. To deliver
that potential, we’ve carefully considered the security and ethical consequences
of our work on Bittensor. In terms of security, we ensure that miners only
upload weights rather than code, which limits the risk posed by rogue miners.
To address concerns around data privacy, we made the design decision to only
rely on free, publicly available data sources for model pretraining.

Central to our approach to building the pretraining subnet is to share with
the community as much performance data as possible through our dashboards
[16]. These dashboards allow us to share information such as the network loss
in real time.
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4 Results

Since launch, we’ve continuously benchmarked performance on the pretraining
subnet against comparable models. To date, the results have confirmed our
starting hypothesis: models trained within Bittensor have been able to match
or out-perform models at a comparable model size. In this section we outline the
key results in two competitions; 700M and 7B. Figure 2 show the improvement
of model losses in Subnet 9 over time for these competitions.

In tables 1 and 2 we compare perplexity losses of all models across 3 different
benchmarking datasets; Wikitext103 [?], Falcon RefinedWeb and FineWeb Edu.

4.1 Competing at 700M Parameters

Post-launch, the first major competition we ran on Subnet 9 was at 700 million
parameters, comparable to gpt2-large. Our goal was to demonstrate that models
built on the subnet could compete with a household name like gpt2-large, which
was state of the art in its time. Table 1 shows how the top-performing model
developed in the 700M competition benchmarks against comparable models.

Model Size La Lb Lc

gpt2 124M 30.13 35.25 29.63
gpt2-large 774M 19.50 23.89 19.5

phi-2 2.8B 9.79 15.19 12.09
Jonathan18/net9 miner3 769M 15.89 15.57 15.21

Table 1: Benchmarking results for different ≈700M models on 3 datasets. Re-
sults are given as perplexities on (a) Wikitext103, (b) Falcon Refined Web and
(c) FineWeb Edu. The model Jonathan18/net9 miner3 was produced by sub-
net 9.

The top performing model in the 700M competition (Jonathan18/net9 miner3 )
far exceeded the performance of gpt2-large, across every benchmark test we ran.
The biggest difference in performance was on the Falcon Refined Web dataset
(15.57 vs 23.875), which at the time was the dataset used for validating models in
subnet 9. However, even on the other benchmarks we track, the top-performing
model produced by our pretraining subnet outperformed GPT-2-Large.

Moreover, the top-performing model in the 700M competition recorded
performance closer to that of Phi-2, an LLM developed by Microsoft, scoring
15.57 on Falcon Refined Web, vs. 15.1896 for Phi-2. Given that Phi-2 is almost
4x larger than the maximum size allowed for competition, it’s a remarkable
result.
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(a) 700M competition (b) 7B competition

Figure 2: Loss curves (L) for (a) 700M parameter and (b) 7B parameter com-
petitions. Decreasing trends of loss signify improvements of the models over
time. The sudden decrease in loss of the 7B competition was due to the use of
an improved dataset (Fine Web)

4.2 Competing at 7B Parameters

Following the results from the early competition on the pretraining subnet, it
was clear that the subnet could foster the development of new models that could
outperform household names like GPT 2. Our next goal was to scale up the
size of the competition. 700M is obviously small compared to current models.
So as a second stage, we increased 10-fold the possible parameters to 7 billion.
Table 2 compares the performance of the top model produced by subnet 9 with
equivalent models; mistral-7b, and falcon-7b.

At 7 billion parameters, the top performing model on the subnet (jw-hf-
test/jw2 ) outperformed falcon-7b on the FineWeb Edu dataset and the loss con-
tinues to improve. We also note that scores for both Wikitext103 and Falcon
Refined Web are approaching SOTA. This is a major milestone for the Bitten-
sor ecosystem, as we’ve shown an open-source model built in a decentralized
ecosystem can out-perform a state-backed project like Falcon.
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Model Size La Lb Lc

falcon-7b 6.9B 6.563 11.063 9.938
Mistral-7B-v0.1 7.2B 4.93 9.113 7.178
jw-hf-test/jw2 6.9B 7.084 13.648 8.593

Table 2: Benchmarking results for different ≈7B models on 3 datasets. Results
are given as perplexities on (a) Wikitext103, (b) Falcon Refined Web and (c)
FineWeb Edu. The model jw-hf-test/jw2 was produced by subnet 9.

5 Roadmap

5.1 What is the future for the pretraining subnet?

We are still in the early stages of Subnet 9 and the capabilities that come with
an open source, incentivized model for building pretraining models. Having
demonstrated our initial hypothesis by showing that a subnet can be used to
develop a pretraining model, our focus is now to further improve and scale the
subnet. These include:

1. Multiple concurrent competitions: Other subnets run multiple com-
petitions, allowing individual miners to compete on specific tasks. This
allows more miners to earn TAO on the subnet, while also creating more
value by means of a larger range of models. On August 12th 2024, the
subnet was expanded to support concurrent competitions at sizes 700M,
3B and 7B, and an additional 14B competition will be introduced before
the end of August 2024. Results for these ongoing competitions can be
found on Macrocosmos’ subnet 9 dashboard [?]. We are also investigating
use cases for pretraining multi modal and omni models, which is an ex-
citing area of research in modern AI. Lastly, we plan to introduce further
competitions for larger models in the coming months so that subnet 9 can
continue to push the frontiers of decentralized pretraining.

2. Incentive mechanism improvements: We will continue to devise new
experiments to analyze and refine the incentive mechanism design in order
to maximize the value created by our subnet. On August 8th 2024 an
additional competition, named 7B*, was introduced which is identical to
the 7B competition except for a lower epsilon threshold of ϵ = 0.1%. This
experiment will be used elucidate the optimal value by means of a head-
to-head comparison of results. Live results can be found in Macrocosmos’
subnet 9 dashboard [?]. Beyond this, we are experimenting with various
formulations of “dynamic epsilon”, which decays the ϵ over time in order to
ensure that competitions do not stagnate based on sub-optimal ϵ values.
Our first version of “dynamic epsilon” will be released before the end
of August 2024. We will also investigate how we can safely relax key
constraints on the competitions such as architectures and tokenizers, so
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that competitions can be less restricted and more productive. Our goal is
to resolve any remaining open questions on the optimality of the present
system design by running open experiments with the subnet 9 mining
community.

3. Improved evaluation of models: To date, we’ve measured models on
their natural language generation. Existing model benchmarking increas-
ingly uses a suite of different tasks such as coding and math problems to
assess performance. Implementing a wider set of benchmarks is a natural
next step in subnet 9’s evolution. Furthermore, we are developing novel
synthetic benchmarking datasets that will enable us to scrutinize model
performance in an objective way, building on our work on other subnets
within Bittensor.

4. Directability and productization: The broader goal for the pretrain-
ing subnet is to reach a point where start-ups and small businesses can
overcome the expense and technical challenges of training their own LLMs
by using the pretraining subnet, as well as a broader suite of directed Bit-
tensor subnets. We are reaching a point where the pretraining subnet is
becoming the foundation for a wide range of use cases, both internal to
Bittensor and within the broader AI marketplace. Already, the pretraining
subnet produces base models for Bittensor’s flagship fine-tuning subnet.
By building this market around pretraining, we’ll be able to deliver the
economic potential of pretraining on Bittensor.

5. Fully decentralized training: As mentioned in 1.3, the pretraining sub-
net has been designed to host decentralized pretraining competitions. To
date, we have demonstrated that this framework works in practice. Ex-
periments are already underway at Macrocosmos which explore how to
create a subnet that isn’t limited by the capabilities of the best individual
miner. In order to tackle larger challenges in the future, we plan to evolve
the pretraining subnet towards a decentralized training model where min-
ers are collaborating on model development, rather than each developing
their own separate model.

6 Conclusion

This whitepaper demonstrates that it is possible to develop pretraining models
on Bittensor that match or exceed the capabilities of equivalent SOTA models.
By combining an open-source model development with a blockchain-based in-
centive mechanism designed to encourage competition, the pretraining subnet
shows what Bittensor is capable of delivering. Our key findings are:

• At 700 million parameters, top-performing models on Bittensor notably
outperformed equivalent models like gpt2-large and achieved results com-
parable to models multiple times larger.
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• At 7 billion parameters, we have seen that they are equally competitive,
matching state-sponsored models like falcon-7b across every benchmark
test that was used.

These preliminary results serve as our proof-of-concept for a pretraining
subnet, and are the product of a living experiment which began in November
2023. The present work is foundational research that demonstrates how an in-
centive structure can be used to leverage decentralized computing power and
drive real improvements in pretraining model performance. The subnet is ulti-
mately designed to encourage exponential improvement in model performance
through a winner-takes-all competition. We’re still at the start of that expo-
nential improvement. Our future roadmap will build on these successes, and
will learn from our mistakes.

The appropriate framing of these results is to compare them to equivalent-
sized projects. This is because the tech giants who are currently producing
industry-leading models are allocating resources on the order of billions of dollars
and thousands of world-class researchers and developers. Meanwhile, Bittensor
is powered by a small group of passionate, highly motivated individuals. The
sum total of all results which we present in this whitepaper were funded by
the Bittensor token TAO and it’s community, by means of miner emissions,
who received estimated lifetime earnings of circa $5M for their contributions.
At Bittensor continues to grow, it will further attract top talent who want to
monetize their expertise and build an open future for AI. For these reasons, we
believe the future of pretraining in Bittensor is bright.

“Never doubt that a small group of thoughtful, committed citizens can change
the world; indeed, it’s the only thing that ever has.” – Margaret Mead
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8 About Macrocosmos

Macrocosmos is an open-source AI research lab, building on Bittensor.
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By creating competitive, secure, validated marketplaces for AI develop-
ment, we unlock the potential of distributed networks to serve broader interests
beyond the walled garden - create powerful, decentralized, and equitable intel-
ligence for all.

Bittensor is the largest open source blockchain network for training and
building machine learning models. Harnessing distributed compute at scale,
Bittensor incentivises and rewards participants, creating an ecosystem of skilled
teams competing to improve model performance. In turn, this drives efficiency
up, and the cost-of-compute down. Its open-source architecture gives AI inno-
vators what they need to thrive: transparency, ownership and accountability.

At Macrocosmos, we build and operate five subnets on Bittensor. We’re
honing the environment on which AI innovators can build new applications, by
designing incentive mechanisms and reward structures that make world-class
compute accessible and affordable. We see ourselves as an incubator for the
Bittensor platform: conducting groundbreaking research, testing new concepts,
and continuously driving innovation.

Each subnet - language models, pretraining, fine-tuning, data-scraping and
protein folding - is a network incentivising the development of machine learning
models. Together, they can enhance performance across the whole Bittensor
ecosystem, creating a platform for new, open source AI applications at scale.
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